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Abstract. On the basis of the experimental data on diffractive processes in πp, pp and pp̄ collisions at inter-
mediate, moderately high and high energies, we restore the scattering amplitude related to the t-channel
exchange by vacuum quantum numbers by taking account of the diffractive s-channel rescatterings. At
intermediate and moderately high energies, the t-channel exchange amplitude turns, with a good accuracy,
into an effective pomeron which renders the results of the additive quark model. At superhigh energies
the scattering amplitude provides a Froissart-type behaviour, with an asymptotic universality of cross
sections such as σtotπp /σ

tot
pp → 1 at s→∞. The quark structure of hadrons being taken into account at the

level of constituent quarks, the cross sections of pion and proton (antiproton) in the impact parameter
space of quarks, σπ(r1⊥, r2⊥; s) and σp(r1⊥, r2⊥, r3⊥; s), are found as functions of s. These cross sections
implicate the phenomenon of colour screening: they tend to zero at |ri⊥ − rk⊥| → 0. The effective colour
screening radius for pion (proton) is found for different s. The predictions for the diffractive cross sections
at superhigh energies are presented.

PACS. 14.20.Dh Protons and neutrons – 14.40.Aq π, K and η mesons – 13.85.Dz Elastic scattering –
13.85.Lg Total cross sections

1 Introduction

The investigation of diffractive processes at moderately
high and high energies turned rather long ago into the
study of the t-channel structure of the amplitude with
vacuum quantum numbers (pomeron). The understand-
ing of the t-channel exchange amplitude grew up parallel
with the growth of energies of the colliding particles stud-
ied in the experiment. The main characteristics of the soft
pomeron are its intercept and proper size. A particular
feature of the QCD pomeron is the colour screening phe-
nomenon.

In the latest decade it became clear that an under-
standing of the t-channel structure of the amplitude is not
enough for the description of diffractive processes at high
and superhigh energies, because the s-channel diffraction
rescatterings play here a crucial role. The present paper is
devoted to the study of the soft pomeron (or Strong-QCD
pomeron), with a simultaneous s-channel unitarization of
the amplitude due to the account for diffractive rescatter-
ings.

The paper is organized as follows. In Sect. 2 a brief sur-
vey of the problem is presented, with an emphasis to vari-
ous approaches to the Strong-QCD pomeron. In Sect. 3, in
the framework of generalized eikonal approach which in-
cludes the s-channel diffractive rescatterings in the leading

order terms of the 1/Nc-expansion, the description of the
experimental data is carried out for the pp̄(pp), πp and
γp soft diffractive processes. In Conclusion we summarize
the results underlining our vision of diffractive processes.
In Appendix A the formulae for diffractive amplitudes are
derived, the basic points of the generalized eikonal ap-
proach being emphasized. Appendix B is devoted to the
three-reggeon amplitude PGG which is responsible for
the colour screening. In Appendix C the pomeron–meson
amplitude is presented in terms of the light–cone variables.

2 Strong-QCD pomeron

2.1 Pomeron intercept

The range of intermediate and moderately high energies
is well described by the t-channel pomeron with an in-
tercept αP (0) = 1 (the pomeron of Gribov - Chew -
Frautschi (GCF) [1]). Still, with the energy increase it
became obvious that the experimental data do not obey
the GCF pomeron: Kaidalov and Ter-Martirosyan (KT)
[2] suggested a supercritical pomeron with an intercept
αP (0) = 1 + ∆ where ∆ > 0, that gives σtot ∼ s∆; in
fitting to data the magnitude ∆ ' 0.12 was found. Don-
nachie and Landshoff (DL) [3] succeeded in the description
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of a wide range of experimental data on the diffractive pro-
cesses using a supercritical pomeron with ∆ ' 0.08. As
was obvious from the very beginning, the one-pomeron
exchange amplitude with ∆ ∼ 0.1 (KTDL pomeron) is
applicable in a restricted region of energies. With the en-
ergy growth, the one-pomeron exchange amplitude with
∆ ∼ 0.1 violates the unitarity requirement, for the maxi-
mal allowed growth should be consistent with the Froissart
limit which provides a weaker growth, σtot ∼ ln2 s.

In [4,5], it was argued that the pomeron with ∆ = 0.08
is a universal object capable to describe the soft diffrac-
tion and small-x deep inelastic processes at moderately
high and high energies. However, the value ∆ ' 0.08
contradicts the DESY data on vector-meson electropro-
duction at the invariant energies W =10 - 200 GeV [6].
For this process and small-x deep inelastic scattering the
value ∆ ∼ 0.2 − 0.3 was found (see [7] and references
therein).

In the present paper we underline that the value ∆ ∼
0.1 does not provide a self-consistent description of the
diffractive scattering data even at moderately high ener-
gies. The large diffractive cross section (its magnitude is
nearly one half of σtot, as was stressed long ago [8]) results
in large s-channel–unitarity corrections. In the complex-
j plane, they generate branching points of a considerable
contribution, and these branching points are not cancelled
by other subprocesses. The total contribution which comes
from the pole and branching points requires ∆ > 0.1
[9,10].

2.2 Soft-pomeron size

Pomeron is mainly a gluonic system, and this defines its
properties. One of the most important characteristics of
the pomeron, on which the physics of the diffractive pro-
cesses is founded, is the pomeron size. The partons of the
gluonic ladder, which forms a pomeron, saturate a disk
in the impact parameter space. The radius of the disk
increases infinitely with s, and it is the pomeron slope,
α′P (0), which determines the disk size at fixed s. As it fol-
lows from the experiment, the pomeron slope is not large
at modern high energies, α′P (0) ∼ 0.2 (GeV/c)−2 [11]. It
can be compared with the slope of the ρ-meson trajectory
– this slope being a typical hadronic value is consider-
ably larger: α′ρ(0) ' 1 (GeV/c)−2. For the pomeron rep-
resented by the gluon ladder of Fig. 1a, the slope α′P (0)
is determined by the size of the gluon plaquet which is a
constructive element for this ladder, see Fig. 1b. As was
stressed in [12], the small size of this plaquet can be af-
fected by a comparatively large mass of the effective gluon
(the soft gluon), this mass being of the order of 0.7− 1.0
GeV.

The prompt evaluation of the effective gluon mass is
possible in radiative J/ψ and Υ decays. The estimation
of the effective gluon mass firstly performed by Parisi and
Petronzio [13] for the decay J/ψ → γ + gg provided the
value mg ' 800 MeV. The analysis [14] of more copious
data gave mg ' 800 MeV for the reaction J/ψ → γ + gg
and mg = 1100 MeV for Υ → γ + gg.

The glueball physics enlightens the problems of soft
gluodynamics as well. Within the lattice calculus, the fol-
lowing values were obtained for the mass of the lightest
scalar glueball: mscalar glueball = 1549± 53 MeV [15] and
1740 ± 71 [16]. Experimental data also indicate the ex-
istence of the scalar-isoscalar state in the mass region
1300−1600 MeV: this state being an excess for the quark-
antiquark nonet systematics is a good candidate for the
lightest scalar glueball [17,18]. These results support a
comparatively large value of the effective gluon mass:
mg ∼ mscalar glueball/2 ∼ 650 − 800 MeV. Moreover, in
line with this discussion, lattice calculations [16] resulted
in a small size of the lightest scalar gluodynamic glueball,
< r2 >glueball' 0.1 fm2.

In the bootstrap-type model [19], when the forces re-
sponsible for the meson formation are determined by the
exchange of both effective gluon and mesons, the qq̄-
spectroscopic calculations of mesons from the low-lying
multiplets 11S0qq̄, 13S1qq̄ and 13P1qq̄ required the mas-
sive effective gluon, mg ' 700 MeV, in an agreement with
the above-discussed values.

The estimation of the gluon mass within perturba-
tive QCD [20] yielded the value of the same order: mg =
1.5+1.2
−0.6 GeV, and recent lattice calculation [21] provided

us with mg ' 0.8 GeV.
The quark model had a striking success in the descrip-

tion of hadron collisions at intermediate and moderately
high energies. The pomeron size is crucial characteristics
for the quark model, for only with a small-size pomeron
the additivity of the scattering amplitudes occurs. This
was formulated rather long ago [22]. At 70’s and the be-
ginning of 80’s, parallel with accumulating experimental
data, the arguments in favour of pomeron’s small size grew
up [23]; they were summarized in [24]. Later on, the small-
size pomeron was named a point-like pomeron [25].

An opposite point of view concerning the pomeron
had been developed in the approach initiated by Low and
Nussinov [26], where the t-channel exchange with vac-
uum quantum numbers was treated as an exchange of
the two massless gluons (see Figs. 1c,d, where typical di-
agrams for meson–meson scattering are drawn). The t-
channel massless gluons emulated a large radius for the
t-channel interaction, thus forming a large-size pomeron.
A noticeable advantage of this approach consisted in a
formulation of the colour screening phenomenon for col-
liding quarks: the diagrams of Figs. 1c,d cancelled each
other at |r1⊥ − r2⊥| → 0 (r1⊥ and r2⊥ are impact pa-
rameters of quark and antiquark of a meson represented
by the upper block). Later on, the colour screening phe-
nomenon became a subject of a special discussion and
gave rise to the search for the colour transparency, see
[27] and references therein. In the Low–Nussinov model
the large radius of the two-gluon interaction led to the
dipole structure of the scattering amplitude. As a result,
σtotπp was proportional to the pion mean radius squared,
< r2

π >, and σtotpp was proportional to < r2
p >, hence

σtot(πp)/σtot(pp) '< r2
π > / < r2

p >' 2/3, in qualita-
tive agreement with the experimental data [28].
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Fig. 1a–f. (a) Pomeron as gluon ladder; (b) gluon plaquet
– a constructive element for the pomeron; (c)–(d) two-gluon
exchange diagrams for meson–meson scattering: impulse ap-
proximation (c) and colour screening (d) diagrams; (e)–(f)
pomerom–meson amplitude: impulse approximation (e) and
colour screening (f) diagrams

However, one should stress that a direct use of the
massless-gluon exchange violated analytic properties of
the scattering amplitude: the amplitude singularity ap-
peared at t = 0 that made the discontinuity unequal to
zero at t > 0, namely, disctAelπp, two−gluon exchange 6= 0 at
0 < t < 4µ2

π, while actually disctA
el
πp appears only at

t > 4µ2
π. The region of small positive t is in the closest

vicinity to the physical region of diffractive processes, so
the violation of analyticity looks menacing here. In [29], in
order to restore the analyticity for the two-gluon exchange
diagram, a cutting was suggested, with tcut ∼ 4µ2

π; still,
this parameter, as the effective gluon mass estimation tells
us, must be greater: tcut ∼ 2 GeV2.

2.3 Colour screening phenomenon

The problem of taking account of the colour screening
for quasi–point-like pomeron was discussed in [12], where
Lipatov’s perturbative pomeron [30] has been used as a
guide. The figure 1e to f demonstrates different couplings
of the Lipatov-type pomeron to meson quarks: just these
two types of a coupling provide the colour screening of me-
son quarks for the soft pomeron. In further works [31,32],
the problem of whether the colour screening was inherent
to Lipatov’s pomeron has been discussed in details.

According to [9,10], the corresponding meson–
pomeron and proton–pomeron amplitudes have the fol-
lowing structure:

ρ(b−r1)+ρ(b−r2)−2ρ(b− r1 + r2

2
) exp(− (r1 − r2)2

4r2
cs

) ,

Σi=1,2,3 ρ(b−ri)−Σi6=k ρ(b− ri + rk
2

) exp(− (ri − rk)2

4r2
cs

) .

(1)

Here ρ(b) is the pomeron amplitude in the impact param-
eter space, ρ(b− r1⊥) corresponds to the pomeron-quark
vertex as is shown in Fig. 1e, where the pomeron interacts
with one quark only, the term ρ(b − r2⊥) relates to the
second quark; the last term corresponds to the diagram
of Fig. 1f where the pomeron interacts with two quarks
(see Appendices A, B, C for details). In the Lipatov-type
pomeron, the t-channel gluons are reggeized [33], and the
intercept of reggeized gluon is close to the unity, namely,
αgluon(0) = 1−∆gluon, where ∆gluon is small. The prox-
imity αgluon(0) ' 1 is an essential point for equation (1);
we shall discuss it in Appendix B.

Actually, the equation (1) does not specify the
pomeron size. A large pomeron size responds to the case
when one can neglect the ri⊥-dependence in the pomeron
amplitude, ρ(b − ri) ' ρ(b), while the exponent is ex-
panded in a series with respect to a small magnitude
(r1⊥ − r2⊥)2/4r2

cs (the value (r1⊥ − r2⊥)2 is restricted
by meson size, and the colour screening parameter, r2

cs,
is assumed to be large). The first non-vanishing term of
a series is proportional to 2(r1⊥ − r2⊥)2 for meson and
(r1⊥ − r2⊥)2 + (r2⊥ − r3⊥)2 + (r1⊥ − r3⊥)2 for pro-
ton that, after averaging over the meson (proton) wave
functions squared, results in the factor < r2 >meson and
< r2 >proton, in a complete similarity to the two-gluon
exchange model. But from now on the similarity ends,
for the amplitude (1) has as a factor the pomeron ampli-
tude ρ(b), while for the two-gluon exchange model one has
gluon propagators.

For a small-size pomeron, the ratio r2
cs/ < r2 >meson

is small, so the last term in (1), which implies the colour
screening, is small everywhere but for a region where me-
son quarks are in a squeezed configuration: |r1⊥− r2⊥| ≤
rcs. At the same time, the contribution of two first terms,
which correspond to the impulse approximation diagrams,
is significant everywhere where meson wave function dom-
inates. In such a way, the small-size pomeron justifies addi-
tive quark model at moderately high energies; in particu-
lar, it leads to the ratio σtot(πp)/σtot(pp) ' 2/3 in accor-
dance with the pion/proton constituent quark numbers.
Moreover, the colour screening term in (1), though com-
paratively small, allows one to explain the deviation from
additivity within the constituent quark model at moder-
ately high energies, that was a puzzle rather long ago.
Namely, the ratio σtot(πp)/σtot(pp) is slightly less than
2/3 (experimentally it is 2

3 (1 − δ), with δ ' 0.1). The
Glauber rescatterings calculated within constituent quark
model (see [34]) do not help providing δ ' −0.1. This is
understandable, for the Glauber screening is more signifi-
cant for systems with larger number of constituents, that
is for the proton. Therefore, the deviation of the cross
section ratio from 2/3, though small, is of a principal im-
portance. It was suggested in [23] that just three-reggeon
diagrams with pomeron and two colour reggeons are re-
sponsible for δ > 0. The calculations of diffractive pro-
cesses performed in [12] fortify this idea specifying colour
reggeons to be reggeized gluons.

Using the language of reggeon exchanges, the impulse
approximation diagrams of the type of Fig. 1e can be
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Fig. 2a–i. Diagrammatic representation of the pomeron–
meson (a)–(d) and pomeron–proton (e)–(i) amplitudes, with
P being a pomeron and G reggeized gluon. Three–reggeon di-
agrams PGG provide the colour screening

represented as diagrams of Figs. 2a,b, so the diagram of
Fig. 1f which provides the colour screening is re-drawn as
Fig. 2c; the shaded block of Fig. 2d represents the whole
pomeron-meson vertex. Here P stands for the pomeron
and G for reggeized gluon. In such a way the diagram
responsible for the colour screening (Fig. 2c) is the three-
reggeon diagram PGG. Likewise, the pomeron–nucleon
amplitude is shown in Fig. 2e to i, with all possible cou-
plings of reggeized gluons G to nucleon quarks, thus grant-
ing the colour screening.

2.4 The s-channel unitarity and soft primary pomeron

Within the one-pomeron exchange approach shown in
Fig. 2 the calculations of the pp and πp scattering am-
plitudes have been performed in [12] for σtot and dσel/dt
in the energy range plab ' 200 − 300 GeV: this is just the
region where σtotπp and σtotpp are almost energy-independent,
that corresponds to αP (0) ' 1. Naively, the problem of ex-
tending the model to the region of higher energies looked
rather simple: one should introduce ∆ of the order of 0.1,
following the suggestion of [2,3], and evaluate the correc-
tions related to the two-pomeron exchange (these correc-
tions are to be taken into account, because elastic and
diffractive cross sections, σel and σDD, are determined
by the imaginary parts of the two-pomeron exchange dia-
grams, and they are not small). However, the realization
of this program with ∆ ' 0.08 faced a phenomenon which
may be called a hidden unitarity violation: the description
of experimental data with both one-pomeron (Fig. 3a)
and two-pomeron exchanges (diagrams of Fig. 3b type)
requires ∆ significantly larger than 0.08. The introduc-
tion of triple rescatterings (Fig. 3c), etc. results in the
subsequent increase of ∆; so one may conclude that the
amplitude with ∆ = 0.08 is not self-consistently unitary
to agree with the experiment even at moderately high en-
ergies. The unitary amplitude which takes into account
a full set of the s-channel rescattering diagrams (Fig. 3)
and describes the available high-energy experimental data
requires [10]:

∆ = 0.29. (2)

Fig. 3a–c. (a)–(c) Examples of multi-pomeron exchange dia-
grams, colour screening term included; the shaded block is that
of Fig. 2d

We refer to the soft pomeron with ∆ ' 0.3 as a primary
one. A significant increase of ∆ as a result of the s-channel
rescatterings is due to the large contribution of diffractive
processes: even at moderately high energies the diffrac-
tive processes provide nearly a half of total cross section
[8], and their rate approaches 1/2 with the energy growth.
A large rate of diffractive processes undermines the idea
thoroughly accepted at the early stage of the pomeron
study that the s-channel unitarity of the scattering ampli-
tude is mainly due to the truly inelastic processes related
to a pomeron cutting.

Fitting to experimental data on total and elastic cross
sections at high energies [10] provides us with the char-
acteristics of the primary pomeron strikingly close to the
characteristics of Lipatov’s one [30]. Recall that the be-
haviour of amplitudes related to the diffractive hadronic
processes is governed by singularities in the complex plane
of the angular momentum j. The pQCD pomeron in the
leading-logarithm approximation is a set of ladder dia-
grams with the reggeized t-channel gluons, see Fig. 1a
(the ladder diagram representation of the pQCD-pomeron
occurs with a special choice of the spin structure of the
three–gluon vertex, the gluons being reggeized). Within
pure pQCD calculus, the corresponding leading singular-
ity in the j-plane is the branching point at j = 1+∆BFKL,
where ∆BFKL = (g/π)23 ln 2 ' 0.5 (BFKL-pomeron [33,
35]). It is necessary to mention the latest next-to-leading
order (α2

s) calculations of ∆BFKL [36] which provided the
value ∆BFKL ' 0.1 − 0.2, though it might be probable
that the next correction, of the order of α3

s, would result
in a value ∆BFKL ' 0.3− 0.4 [37].

The application of QCD-pomeron to phenomenological
calculations makes it urgent to consider the gluon virtual
momenta close to those used in the leading-logarithm ap-
proximation. In [30] the virtualities of such a type have
been effectively taken into account with the help of a
boundary condition, together with the constraint ensured
by the asymptotic freedom of QCD. The pomeron ob-
tained in such a way, Lipatov’s pomeron, is an infinite
set of poles in the region 1 < j ≤ 1 +∆, and there exists
a constraint for the leading pole intercept: ∆ ≥ 0.3.

Coming back to the results of [10], the vacuum singu-
larity of the primary pomeron has been approximated in
the j-plane by the two poles:

j = 1 and j = 1 +∆ with ∆ = 0.29 , (3)

following the idea [29] of the two-pole approximation of
Lipatov’s pomeron.



L.G. Dakhno, V.A. Nikonov: The structure of soft pomeron and colour screening 213

The value ∆ ' 0.3 obtained from the fit of total and
elastic πp and pp processes is on the lower boundary of
the intercept of Lipatov’s pomeron. Moreover, the small
value of the primary–pomeron slope, α′P (0), supports the
idea about its small size. It was found [10] for the primary
pomeron:

α′P = 0.112 (GeV/c)−2. (4)

Another characteristics of the primary pomeron, that is
the colour screening radius rcs, also manifests the small
size of the primary pomeron [10]:

rcs = 0.17 fm. (5)

One may suggest that just the small size of the primary
pomeron makes its properties close to the characteristics
to the Lipatov’s pomeron.

In the present paper we have extended the applicabil-
ity region, having included the intermediate energy region
plab ' 50 − 200 GeV/c into consideration. This requires
an additional pole:

j = 1−∆′, with ∆′ > 0. (6)

However, this did not affect the characteristics of the two
leading poles (3).

2.5 Superhigh energies and the Froissart limit

At superhigh energies, the diffractive cross section ap-
proaches its asymptotics determined by a full set of multi-
pomeron exchanges, which examples are shown in Fig. 3.
In the impact parameter space, the interaction region is
a black disk, with the radius growing as ln s (Froissart
limit). At

√
s ≥ 500 GeV, in the leading-logarithm ap-

proximation (that means Rdisk ∼ rdisk ln s), the pp̄ and
πp cross sections behave as follows [10]:

σtotπp ' σtotpp̄ ' 2πr2
disk ln2 s ,

σelπp ' σelpp̄ ' πr2
disk ln2 s ,

dσelπp
dq2
⊥
'
dσelpp̄
dq2
⊥

' π

4
r4
disk ln4 s exp

(
−1

4
r2
disk ln2 s · q2

⊥

)
, (7)

where r2
disk ' 0.051 mb = (0.071 fm)2. Generally, the

scattering off the black disk leads to the Bessel–type am-
plitude oscillations in q2

⊥; still, as we consider here the
amplitude in the region of small q2

⊥, the exponential rep-
resentation is valid. It should be emphasized that the late
start of the asymptopia is caused by small r2

disk: this mag-
nitude almost coincides with α′P = 0.112 (GeV/c)−2 =
(0.066 fm)2, see (4). The dimensional characteristics of
the primary pomeron (α′P , r

2
cs, r

2
disk) obtained by fitting

to data are rather small and of the same order: we con-
sider this as a manifestation of a comparatively large mass
of the effective gluon. The idea that the gluonic structure

of the high-energy t-channel exchanges results in a late
asymptopia was discussed in [38].

At lower energies,
√
s ≤ 500 GeV, the terms propor-

tional to ln s become important in diffractive cross sec-
tions, and at

√
s < 15 GeV the term ∼ 1/s∆

′
is seen.

2.6 Intermediate and moderately high energies

The analysis of diffractive processes at intermediate and
moderately high energies, plab ∼ 50 − 100 GeV/c, is of a
great interest:
(i) The pomeron exchanges dominanate at these energies,
so expanding our approach to this energy region makes
it possible to resolve more precisely the j-plane pomeron
singularities.
(ii) This energy region was discussed in the literature as
a suitable one for the study of colour transparency. For
quantitative estimation of colour transparency, the colour
screening radius for the pomeron interaction should be
known as a function of energy: the analysis of diffractive
processes can give such information.
(iii) The additive quark model provides rather good de-
scription of data at intermediate and moderately high en-
ergies. So, it is very instructive to trace the transitions
of diffractive amplitudes from superhigh energies, where
hadron amplitudes are universal, to the region, where the
quark additivity works.

It should be stressed once again that coming from su-
perhigh energies, where pomeron parameters are properly
determined, to the region of moderate energies, where non-
leading trajectories are significant, allows us to evaluate
more precisely the contributions of the non-leading terms.
This evaluation makes it possible to fix the beginning of
a pure pomeron contribution.

2.7 Eikonal and generalized eikonal approaches

The eikonal approach allows one to resolve the problem of
the s-channel unitarization of the diffractive amplitudes
for ∆ > 0. The eikonal approach was applied to the πp
and pp scattering amplitudes at high energies in [39,40].
However, the classic eikonal formulae do not take into
consideration the diffractive production processes in the
intermediate states, although this contribution is of the
same order as the classic eikonal rescattrings. In [9,10]
a generalized eikonal approach was developed in which
the diffractive processes have been considered at the con-
stituent quark level: this allows us to take account of all
diffractive processes which are directly related to the dis-
integration of colliding hadrons. This is due to the quark–
hadron duality: the qq̄-state (see Fig. 4a) is equivalent to
a full set of hadron states (Fig. 4b,c).

The 1/Nc expansion rules [41] allow us to believe
that generalized eikonal is a reasonable approximation
for the description of diffractive processes caused by pri-
mary pomeron. The fact is that the coupling of the pri-
mary pomeron to hadron is suppressed as 1/Nc, but this
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Fig. 4a–e. (a)–(c) Double rescattering diagrams: the interme-
diate qq̄ state is equivalent to the sum of all possible hadron
states (b), (c), etc.; (d) the three-pomeron (PPP) t-channel
exchange; (e) the four-pomeron exchange amplitude PPPP

suppression is compensated by the increase of s∆. Multi-
pomeron vertices, like PPP or PPPP of Fig. 4d,e, are not
included into generalized eikonal approach because their
contribution is even more suppressed: the vertex gPPP is
of the order of 1/Nc and gPPPP ∼ 1/N2

c .

3 Diffractive processes: the comparison
with experiments

In this section, in the framework of generalized eikonal
approach, we describe the elastic scattering amplitude for
the pp(p̄p), πp and γp reactions. We consider ImAel(q2 =
0) ∼ σtot, σel, ρ = ReAel/ImAel and the elastic scat-
tering slope B over wide energy range, starting from
plab(pp) = 50 GeV/c, and restore the characteristics of
the primary pomeron.

The diffraction dissociation cross section related to the
dissociation of the colliding hadrons has been calculated
and compared with the experimental data for pp → pX,
that allows us to estimate the cross section which is due
to the three–pomeron vertex PPP.

3.1 Total and elastic cross sections

We refer to Appendices A and B for the derivation
of formulae written below. Our approach is applied to
σtot,elpp̄(pp),πp, the main goal is to extract the parameters of the
soft primary pomeron from the comparison with experi-
mental data. The following formulae describe total and
elastic cross sections of the colliding hadrons A and B:

σtotAB = 2
∫
d2b

∫
dr′ϕ2

A(r′)dr′′ϕ2
B(r′′)

×
[
1− exp (−1

2
χAB(r′, r′′, b))

]
, (8)

σelAB =
∫
d2b

{∫
dr′ϕ2

A(r′)dr′′ϕ2
B(r′′)

×
[
1− exp (−1

2
χAB(r′, r′′, b))

]}2

. (9)

The expression drϕ2
A,B(r) stands for quark densities of the

colliding hadrons A and B which depend on the transverse
coordinates. The pion and proton densities are defined as
follows:

dr ϕ2
π(r) ≡ d2r1d

2r2 δ
2(r1 + r2)ϕ2

π(r1, r2),
dr ϕ2

p(r) ≡ d2r1d
2r2d

2r3 δ
2(r1 + r2 + r3)

×ϕ2
p(r1, r2, r3), (10)

where ri is transverse coordinate of the quark; the averag-
ing over longitudinal variables is performed. The proton
and pion quark densities are determined by their form
factors; this is discussed in Appendix A.

The profile-function χAB describes the interaction of
quarks of colliding hadrons via the pomeron exchange as
follows:

χAB(r′, r′′, b) =
∫
db′db′′δ2(b− b′ + b′′)

× ρA(b′, r′)ρB(b′′, r′′). (11)

The functions ρA,B stand for the amplitudes of the one–
pomeron exchange:

ρπ(r, b) = ρ(b− r1) + ρ(b− r2)− 2ρ(b− r1 + r2

2
)

× exp(− (r1 − r2)2

4r2
cs

),

ρp(r, b) = Σi=1,2,3 ρ(b− ri)−Σi6=k ρ(b− ri + rk
2

)

× exp(− (ri − rk)2

4r2
cs

). (12)

The functions ρπ and ρp tend to zero at |rij | → 0. We per-
form calculations in the centre-of-mass system of collid-
ing hadrons, supposing that hadron momentum is equally
shared between quarks. Then

ρ(b) =

√
fP (sqq)

4π(G+ 1
2α
′
P ln sqq)

× exp
[
− b2

4(G+ 1
2α
′
P ln sqq)

]
, (13)

where the pomeron-quark vertex
√
fP (sqq) depends on

the energy squared of the colliding quarks, sqq (see Ap-
pendix A for details).

The equations (8)–(9) depend on the transverse co-
ordinates of quarks only, though the original expressions
(C.9) and (C.17) of Appendix C depend on the momen-
tum fractions xi of quarks of the colliding hadrons; hence
sqq = sx

(π)
i x

(p)
j for πp and sqq = sx

(p)
i x

(p)
j for pp collisions.

We put xi = 1/2 for meson and xi = 1/3 for proton as-
suming that hadron wave functions ϕπ(r, x) and ϕp(r, x)
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select the mean values of xi in the interaction blocks. A
wide range of wave functions obey this assumption, for ex-
ample, the wave functions of the quark spectroscopy. But
the situation with the colour screening diagram PGG is
more complicated. One should integrate over a part of
the energy carried by reggeized gluons and pomeron: this
spreads xi’s of interacting quarks. However, if the inter-
cept of the reggeized gluon αG(0) ' 1 that is actually a
requirement of the BFKL pomeron, xi can be considered
as frozen. This assumption is valid for 0.8 < αG(0) < 1,
that was checked by numerical calculations for realistic
pion and proton wave functions. In due course, we put
sqq = s/6 for πp and sqq = s/9 for pp collisions.

The equations (8)–(9) can be used at small momen-
tum transfers, when real parts of the amplitude is small.
We neglect the signature factor of the primary pomeron,
though it can be easily restored.

The strategy for the total and elastic cross section cal-
culations has been chosen as follows. Initially we have
included into our calculation the region of high and su-
perhigh energies. The reason is that at such energies the
exchange of vacuum quantum numbers (pomeron) is the
only possible, the other contributions must vanish. Under
such an assumption, it is possible to restrict ourselves by
the two leading trajectory only. Therefore

ρπ(r, b) = ρ(1)
π (r, b) + ρ(0)

π (r, b) , (14)

ρp(r, b) = ρ(1)
p (r, b) + ρ(0)

p (r, b) .

Every term ρ(0,1)(r, b) is given by (12), with its own set
of parameters G, α′P , r2

cs and fP (sqq), but for high and
superhigh energies the identical sets of parameters for ρ(0)

and ρ(1) occurred to be a good approximation: G(1) =
G(0), r(1)

cs = r
(0)
cs , α′(1)

P = α
′(1)
P , and they differ by their

intercepts only.
In such a way the characteristics of the primary

pomeron have been found: the supercritical parameter ∆,
parameters G and α′P for the pomeron slope, and colour
screening radius:

∆ = 0.29, G = 0.167 (GeV/c)−2
,

α′P = 0.112 (GeV/c)−2
, rcs = 0.17 fm, (15)

and

fP (sqq, q2
⊥ = 0) = g2

1 + g2
0 s

∆
qq ,

∆ = 0.29, g2
0 = 8.079 mb,

g2
1 = 0.338

mb
GeV2∆

. (16)

For the description of intermediate energies it is neces-
sary to introduce at least one more pole ρ(−1)(r, b), thus
the whole expression becomes:

ρπ(r, b) = ρ(1)
π (r, b) + ρ(0)

π (r, b) + ρ(−1)
π (r, b) , (17)

ρp(r, b) = ρ(1)
p (r, b) + ρ(0)

p (r, b) + ρ(−1)
p (r, b) .

Fig. 5. Description of experimental data in the energy range√
s = 20 − 105 GeV for (a) total and (b) elastic pp̄(pp) and

πp cross sections; (c) diffraction cone slope, and (d) the ratio
real/imaginary parts of the amplitude

In order to minimize the ambiguities, at plab ∼ 50 − 100
GeV/c the three terms in the r.h.s. of (17) are parame-
terized in the form (13); the parameters fP (sqq, q2

⊥ = 0),
α′P , G and rcs are considered as independent at differ-
ent energies. As it occurred, the parameter α′P remains
the same as before: α′P = 0.112 (GeV/c)−2. The values
fP (sqq, q2

⊥ = 0), G and rcs are now energy-dependent.
The function fP (sqq, q2

⊥ = 0) is now as follows:

fP (sqq, q2
⊥ = 0) = g2

1 s
∆
qq + g2

0 +
g2

(−1)

s∆′qq
, ∆′ = 1.154 ,

g2
(−1) = −44.9 mb ·GeV−2∆′ . (18)

The description of total and elastic pp̄(pp) and πp
cross sections at intermediate energies

√
s = 5 ÷ 20 GeV

is shown in Fig. 6a,b, together with the energy depen-
dent parameters (Fig. 6c,d,e). The accuracy for the pa-
rameter G is not high enough (Fig. 6e): its magnitude,
like α′P , can be regarded as energy-independent. It should
be pointed out that the colour screening radius becomes
smaller with the energy decrease; this fact supports addi-
tive quark model at moderate energies (Fig. 6d). A later
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Fig. 6a–e. Description of experimental data in the energy
range

√
s = 5 − 25 GeV for (a) total and (b) elastic pp̄(pp)

and πp cross sections; (c)–(e) primary pomeron parameters as
functions of the quark–quark energy squared, sqq: (c) quark–
pomeron coupling squared, fP (sqq, q

2
⊥ = 0), (d) colour screen-

ing radius squared, r2
cs, and (e) the pomeron slope G. The error

bars show uncertainties of the parameter definition

(in the s-scale) onset of three-regeon diagram GGP com-
pared with the onset of one-pomeron diagram P results
in a much smaller colour screening effects at

√
s ∼ 5 GeV

(in GGP the energy
√
s is shared between G and P:√

sm2 =
√
sGsP where m ∼ 1 GeV). In other words,

the colour screening is somehow analogous to the inelas-
tic shadowing which starts at the energies large enough to
exceed the inelasticity threshold in the intermediate state.
Then, with a further increase of energies, the contribution
of inelastic shadowing grows, until the integration over in-
termediate mass is saturated by the three–pomeron peak,
or — as it happens with colour screening — by PGG
peak, which behaves like PPP due to the proximity of
the reggeized gluon intercept to the unity. Because of this
similarity, it looks natural that colour screening radius rcs
tends to zero with the energy decrease.

At asymptotic energies (
√
s ≥ 500 GeV) the cross sec-

tions σtotpp and σtotπp calculated with the parameters (15)
increase as 0.32 ln2 s mb, while the growth with energy
of the elastic cross sections, σelpp and σelπp, is proportional
to 0.16 ln2 s mb. At

√
s ≥ 50 GeV, within the 5% accu-

racy, the calculated total and elastic cross sections can be
approximated by the following formulae:

σtotpp = 49.80 + 8.16 ln(sqq/s0) + 0.32 ln2(sqq/s0),

σtotπp = 30.31 + 5.70 ln(sqq/s0) + 0.32 ln2(sqq/s0).

σelpp = 8.19 + 3.027 ln(sqq/s0) + 0.16 ln2(sqq/s0),

σelπp = 3.87 + 1.567 ln(sqq/s0) + 0.16 ln2(sqq/s0). (19)

In (19) the numerical coefficients are given in mb and
s0 = 10000 GeV2. Recall that sqq = s/9 for pp(pp̄) and
sqq = s/6 for πp collisions.

Our predictions for LHC energies (
√
s = 16 TeV) are:

σtotpp̄ = 131 mb, σelpp̄ = 41 mb.

At far asymptotic energies the ratio of total cross
sections σtotpp /σ

tot
πp tends to the unity. At these energies

σelAB/σ
tot
AB → 1/2 (black disk limit).

3.2 Diffraction dissociation of colliding hadrons

The following formulae stand for the diffraction dissocia-
tion processes:

σ
single,DD(B)
AB + σelAB

=
∫
d2b

∫
dr′ϕ2

A(r′)dr′′ϕ2
B(r′′)dr̃′ϕ2

A(r̃′)

×
[
1− exp (−1

2
χAB(r′, r′′, b))

]
×
[
1− exp (−1

2
χAB(r̃′, r′′, b))

]
, (20)

σtotal diffractionAB

= σelAB + σ
single,DD(B)
AB + σ

single,DD(A)
AB + σdoubleAB

=
∫
d2b

∫
dr′ϕ2

A(r′)dr′′ϕ2
B(r′′)

×
[
1− exp(−1

2
χAB(r′, r′′, b))

]2

, (21)

where σsingle,DD(B)
AB describes the diffractive dissociation

of a hadron B and σtotal diffractionAB stands for total hadron
diffraction.

Let it be emphasized that there are two mechanisms
contributing to the diffractive dissociation cross section
σ
single,DD(B)
AB measured at the experiment:

(i) dissociation of a colliding hadron, see Fig. 7a, and
(ii) partly dissociated pomeron, Fig. 7b (the cross section
for the process of Fig. 7b is shown separately in Fig. 7c:
it is related to the three–pomeron cut).

In the used approach the formulae (20)–(21) de-
scribe the hadron dissociation only but not the pomeron
one. The calculated cross section σ

single,DD(p)
pp which is
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Fig. 7a–e. (a)-(b) Diagrams describing single diffraction dis-
sociation: dissociation of a proton (a) and partly dissociating
pomeron (b); (c) cutting of PPP-diagramm that gives the
cross section with partly dissociating pomeron. (d) Experi-
mental data for single diffractive dissociation of a proton, solid
curve stands for the result of the calculation according to (20);
(e) the estimated contribution for the dissociation of pomeron
(three–pomeron diagram, Fig. 7a)

due to the proton dissociation is presented in Fig. 7d,
and figure 7e shows the difference σ

single,DD(p)
pp (exp) −

σ
single,DD(p)
pp (calculated), the latter term given by (20).

This difference stands just for the diffraction of a partly
dissociated pomeron, that is the three–pomeron diagram
of Fig. 7c. It should be pointed out that generalized eikonal
approach allows one to calculate the other characteristics
of the diffractive hadron dissociation, namely, theM2- and
t-dependences. However, such a study is beyond the scope
of this article.

3.3 Photon–proton total cross section and the
photo-production of vector mesons

The developed approach, which until now has been ap-
plied to the diffractive pp and πp cross sections, can be
also applied to the reactions with a photon, that is based
on the hypothesis of vector-meson dominance, γ → V .
Corresponding calculations have been performed for the
sum of diagrams shown in Fig. 8a,b. It is assumed that
the wave functions of vector mesons (ρ, ω, φ) are equal to
that of pion’s, ψV ' ψπ, as they are the members of the
same SU(6)-multiplet.

The total cross section σtotγp has been calculated, with
the same parameters for the primary pomeron which have

Fig. 8a–d. Photon-proton collisions: (a)–(b) diagrammatic
representation of the γp scattering amplitude; (c) description
of the data on total cross section γp, and (d) production of
vector mesons γp→ ρp

been found for the reactions pp and πp. The extra con-
stant is the normalization parameter which determines
the transition γ → V ; its value is defined by σtot(γp) at√
s = Wγp = 20 GeV. The results of the calculation are

shown in Fig. 8c, together with the available experimental
data (see [42] and references therein).

In Fig. 8d we demonstrate the cross section γp →
ρ/ω p calculated under the assumption σ(γp → ρp) =
σ(γp → ωp). No new parameter is used comparing with
the calculation of σtotγp .

3.4 Effective colour screening radius reffcs

The concept of colour screening which is realized here on
the basis of gluon structure of the pomeron makes it neces-
sary to introduce, apart from the colour screening radius
of a primary pomeron, the effective colour screening ra-
dius. For the pion–proton interaction, the colour screening
profile factor is determined as:

ζπ(r, s) = Nσπ(r1⊥, r2⊥; s) (22)

= N

∫
d2b dr′′ ϕ2

p(r
′′)
[
1− exp

(
−1

2
χπp(r, r′′, b)

)]
.
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Fig. 9. The pion profile function ζπ(r, s) depending on the
interquark distance r = |r1⊥ − r2⊥| at different energies

√
s

Here N is a normalization factor which is chosen to satisfy
the constraint:

ζπ(r →∞, s) = 1.

The physical meaning of this colour screening profile factor
is simple: the pion-proton interaction ζπ(r, s) depends on
the pion interquark distance, and it tends to zero with
r → 0, in line with general concept of the colour screening.
After the integrations over the impact parameter b and
proton coordinates r′′, we have found ζπ(r) which is shown
in Fig. 9 for different s. At far asymptotic energies

√
s >>

1010 GeV2 the effective colour screening radius tends to
zero. This phenomenon comes due to the diffusion of the
pomeron gluons in the impact parameter space.

For moderate and high energies a simple approximate
function is useful:

ζπ(r,
√
s ∼ 25−1800 GeV) = 1−exp

[
−(r/reffcs )n

]
, (23)

with n = 1.89 and reffcs = 0.172 fm.
Likewise, effective colour screening radius has been de-

fined for the proton; its numerical value practically coin-
cides with that of pion’s. It is worth noting that the effec-
tive radius reffcs and colour screening radius of the primary
pomeron rcs are very close to each other at

√
s ∼ 25−1800

GeV.

3.5 The low-energy effective pomeron

The last point to be discussed in this section is how the
performed calculations relate to the description of the
diffractive processes at intermediate and moderately high
energies. In the paper [12] the πp and pp diffractive cross
sections were simultaneously described at FNAL energies,
in the framework of the one-pomeron exchange with colour
screening taken into account. The qq-amplitude calculated

Fig. 10a–c. (a)–(b) Effective pomeron Peff as a sum of the
exchanges of primary pomerons and (c) the energy dependence

of the quark–quark amplitude f
(Peff )
qq = σtotqq (eff) due to the

exchange of the effective pomeron

in [12] has been found to be equal to 5.5 mb. Let us con-
sider this single pomeron as an effective one Peff and com-
pare it with analogous magnitude obtained within gen-
eralized eikonal approach developed here. The effective
pomeron is actually a sum of multi-pomeron exchanges of
a primary pomeron shown in Fig. 10a,b, the colour screen-
ing neglected. The summation of all the pomeron graphs
of Fig. 10a,b provides the value 6 mb for f (Peff )

qq = σtotqq at√
s = 24 GeV, thus revealing a self-consistency of both ap-

proaches. It should be noted that σtotqq = fP (sqq, q2
⊥ = 0) of

the primary pomeron is 9 mb at this energy and falls down
to 6 mb at sqq=10 GeV2 (see Fig. 6c). This means that
multiple rescatterings are not much significant, justifying
the results of the additive quark model in this region.

Calculated at different energies, this quark-pomeron
amplitude f

(Peff )
qq (s, q2

⊥ = 0) is shown in Fig. 10c; it
should be emphasized that asymptotically this magnitude,
f

(Peff )
qq (s, q2

⊥ = 0), increases as ln2 s.

4 Conclusion

In this article we have performed the description of soft
diffractive processes in the pp(pp̄), πp and γp processes
within the framework of generalized eikonal approxima-
tion at the whole range of available energies, the charac-
teristics of a soft primary pomeron have been found. Gen-
eralized eikonal approximation is a correct representation
of the s-channel unitarized amplitude with respect to the
leading-in-s terms, provided the multi-pomeron vertices
(PPP, PPPP, etc) are suppressed in the 1/Nc expan-
sion (gPPP ∼ 1/Nc, gPPPP ∼ 1/N2

c , etc).
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The characteristics of the soft primary pomeron oc-
curred to be in a proximity to those of the pQCD pomeron
(Lipatov’s pomeron [30]). The primary pomeron is approx-
imated by three poles in the complex plane j:

j = 1−∆′, 1, 1 +∆, with ∆ = 0.29 and ∆′ = 1.154 .

The intercept of the leading pole is close to that of leading
pole of Lipatov’s pomeron. A small proper size of the soft
primary pomeron, by our opinion, causes this proximity.

Mainly, the asymptotic behaviour of cross sections
is determined by the leading pole with multiple rescat-
terings, that leads to a Froissart–type growth σtot '
2πr2

disc ln2 s. The coefficient r2
disc is of the order of α′P(0):

r2
disc ' α′P(0). A quasi point-like structure of the primary

pomeron is directly related to the small value of param-
eters r2

disc = 0.051 mb = (0.071 fm)2 and rcs = 0.17 fm,
that is unambiguously connected with the large effective
soft gluon mass defined in the analysis of data on radiative
J/ψ decay.

At asymptotic energies reffcs (s) tends to 0 that is due
to a large diffusion of partons in the pomeron ladder. With
the energy decrease, the effective colour screening radius
grows, being of the order of the primary pomeron radius
in the interval

√
s ∼ 50−1010 GeV. The further descent to

the intermediate energies, such as plab ∼ 50− 100 GeV/c,
results in a decrease of the colour screening radius of the
primary pomeron, that makes the effective radius much
smaller too, justifying additive quark model.

The scattering amplitude which is obtained within the
framework of generalized eikonal approach in the energy
range

√
s = 25 − 1800 GeV increases weakly, like s0.1.

This is just the region where the amplitude reproduces
the behaviour of the KTDL-pole. The growth of σtotπp , σtotpp
and σtotγp is found to be universal that does not agree with
the statement of [43] that shadowing results in process-
dependent apparent intercepts for these reactions.

At intermediate energies, plab ' 50 − 100 GeV/c, all
three poles j < 1 and j = 1 are significant. In this region
the generalized eikonal approach reproduces qualitatively
the results of the quark model. The colour screening radius
decreases significantly, r2

cs(sqq) ∼ 5 GeV2) = 0.02 ± 0.01
fm2, thus reducing the colour screening effects into ampli-
tude. This is quite natural for intermediate energies be-
cause the colour screening, in terms of hadronic language,
is due to inelastic shadowing which is small; it increases
steadily with the energy growth and is stabilizing at high
energies (see, for example, [27,44] and references therein).

The performed analysis allows us to conclude that pri-
mary pomeron, which properties are close to those of Lipa-
tov’s pomeron, is a universal object for the description of
soft diffractive processes in the whole interval of high ener-
gies, starting from

√
s ∼ 25 GeV. We would like to stress

that primary pomeron with ∆ ' 0.29, colour screening
and multiple rescatterings included, describes simultane-
ously the data on πp, pp and γp→ V p reaction, the growth
rate being nearly the same. This fact does not agree with
the statement made in [43] that colour screening affects
the different growth rates of cross sections for different
reactions.

Concluding, we would like to underline the basic dif-
ference of the developed approach from that of Donachie–
Landshoff [3,5,43]. In [3,5] soft diffractive amplitudes are
due to the soft pomeron exchange with ∆soft = 0.08,
while a new object – hard pomeron with ∆hard = 0.3 –
is introduced for the vector meson electroproduction pro-
cesses γ ∗ (Q2)V → V P [43]. The hard pomeron vertex
γ∗(Q2)V → hard pomeron depends on Q2, being rather
small or equal to zero at Q2 = 0. However, one may expect
that a realization of this hypothesis in terms of quarks or
hadrons needs a special dynamics: the problem is how to
relate this dynamics to the vector dominance idea or, more
generally, to the mechanism of the photon hadronization
γ → qq̄.

In our model it is the primary pomeron who has ∆ '
0.29, and a weak cross section growth at

√
s = 50− 2000

GeV is due to a considerable shadowing which appeared to
be universal for the light hadrons and photon (within pho-
ton hadronization). One may believe that in the reaction
γ∗(Q2)V → V P the shadowing effects should vanish at
large Q2, leaving the one–pomeron exchange responsible
for the process at Q2 ∼ 10− 20 GeV2.

The authors are grateful to V.V. Anisovich, Ya.I. Azimov, L.N.
Lipatov and M.G. Ryskin for useful discussions and comments.
V.A.N. acknowledges the support of the RFBR grant N 98-02-
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Appendix A.
Soft pomeron and the s-channel unitarized
amplitude: meson-meson elastic scattering

Here we present the formulae for the amplitudes of diffrac-
tive processes emphasizing the basic points of our ap-
proach. To illustrate the method, we consider as an exam-
ple the meson-meson scattering amplitude that allows us
to underline general features of the s-channel unitariza-
tion procedure. Then the formulae for the pion-nucleon
and nucleon-nucleon (or nucleon-antinucleon) diffractive
scattering are presented; some of them were given in [10],
though without derivation.

The study of the meson-meson scattering amplitude
(as well as the other diffractive amplitudes) is performed
in the impact parameter space, that is suitable for the s-
channel unitarization . The consideration is carried out in
the following way:
(i) First, we consider the impulse approximation diagram
for the exchange of the primary pomeron P – the inter-
action of the type of Fig. 2a-b for meson- or Fig. 2e-g for
proton-pomeron amplitude. For the exchange of primary
pomeron, the standard eikonal unitarization is performed.
(ii) Then, the three-reggeon PGG and five-reggeon
GGPGG diagrams are considered: these diagrams are re-
sponsible for the colour screening in the primary pomeron
exchange amplitude.
(iii) As a last step, we take into account a full set
of primary pomeron interactions (P, PGG, GGP and
GGPGG) in the generalized eikonal approximation
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Fig. 11a,b. (a) Meson–meson scattering amplitude; (b) the
pomeron cut enables to treat the pomeron–meson amplitudes
separately

(Fig. 3): it provides a unitarized meson-meson scattering
amplitude with a colour screening.

A1 Primary pomeron exchange and the eikonal
unitarization

Within the standard normalization, the soft-scattering
amplitude of Fig. 11a reads:

A(P )(s, q2
⊥) = i s FA(q2

⊥)FB(q2
⊥)P (s, q2

⊥). (A.1)

Here FA(q2
⊥) and FB(q2

⊥) are form factors of the colliding
mesons A and B (t ' −q2

⊥), and isP (s, q2
⊥) stands for the

primary pomeron propagator coupled to mesons A and B.
For diffractive processes the main contribution is provided
by the imaginary part of the pomeron propagator; the real
part of it may be neglected, although in the calculation of
scattering amplitudes the real part can be easily restored.

For the description of data with Lipatov’s pomeron as
a guide, the pomeron propagator is parametrized by a sum
of several terms, but in this Appendix, for the simplicity
sake, P (s, q2

⊥) is treated as a one-pole term, with α(0) =
1 +∆. Then

P (s, q2
⊥) = gAgBs

∆e−q
2
⊥(2G+α′ ln s). (A.2)

Within the standard normalization, one has for the scat-
tering amplitude ImA(s, 0) = sσtot, though for the calcu-
lation of multiple scatterings another amplitude normal-
ization is more suitable, namely, f(s, q2

⊥) = (is)−1A(s, t).
We unitarize the upper and down blocks of the diffrac-

tive amplitudes separately, and for this purpose let us
cut the pomeron amplitude into two pieces as is shown
in Fig. 11b:

f (P )(s, q2
⊥) = f

(P )
A (sA, q2

⊥)f (P )
B (sB , q2

⊥) . (A.3)

The upper and down pieces of the whole amplitude depend
on the energies squared sA and sB , which obey the equal-
ity sm2

0 = sAsB (below m0 = 1 GeV is chosen). Consider
the upper block in details; it is equal to:

f
(P )
A (sA, q2

⊥) = FA(q2
⊥)gAs∆Ae

−(G+α′ ln sA)q2
⊥ . (A.4)

The amplitude f (P )
A (sA, q2

⊥) represented as an integral in
the impact parameter space reads:

f
(P )
A (sA, q2

⊥) =
∫
d2bA e

iq⊥bA

×
∫
d2r⊥ ϕ

2
A(r⊥) ρA(bA − r⊥, sA). (A.5)

Here ρA(bA, sA) is the pomeron propagator coupled to
meson A,

ρA(bA, sA) =
∫

d2q⊥
(2π)2

e−iq⊥bA gAs
∆
A e
−(G+α′ ln sA)q2

⊥ ,

(A.6)
while ϕ2

A(r⊥) is the Fourier tranform of the pion form
factor:

ϕ2
A(r⊥) =

∫
d2q⊥
(2π)2

eiq⊥r⊥ FA(q2
⊥) . (A.7)

With this definition, the density ϕ2
A(r⊥) in the impact

parameter space is invariant in respect to the boost along
the z-axis.

The down block of Fig. 11b is treated similarly, so one
has:

f
(P )
B (sB , q2

⊥) =
∫
d2bB e

−iq⊥bB

×
∫
d2r ′⊥ ϕ

2
B(r ′⊥) ρB(bB − r ′⊥, sB).(A.8)

Here we take into account that q⊥ is the incoming mo-
mentum for the lower block, while for the upper block it
is the outcoming one.

The one-pomeron exchange amplitude of Fig. 11a, af-
ter replacing r⊥ → r and r ′⊥ → r ′, reads:

f (P )(s, q2
⊥) =

∫
d2b eiq⊥b

×
∫
d2r ϕ2

A(r) dr ′ ϕ2
B(r ′)χ(r, r ′, b), (A.9)

where

χ(r, r ′, b) =
∫
d2bA d

2bB δ(b− bA + bB)

× ρA(bA − r⊥, sA) ρB(bB − r ′⊥, sB). (A.10)

Here χ(r, r ′, b) is the eikonal profile function, which takes
account of all the multi-pomeron exchanges in a standard
way (for example, see [45,46]). The amplitude with n-
pomeron exchanges shown in Fig. 3 (n ≥ 1) is equal to:

f (PP...P )(s, q2
⊥) =

∫
d2b eiq⊥b

∫
dr ϕ2

A(r) dr ′ ϕ2
B(r ′)

× 2
n!

(
−1

2
χ(r, r ′, b)

)n
. (A.11)

So, the scattering amplitude AB → AB with a full set of
the primary pomeron exchanges reads:
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fAB→AB(s, q2
⊥) = 2

∫
d2b eiq⊥b

∫
dr ϕ2

A(r) dr ′ ϕ2
B(r ′)

×
(

1− e− 1
2χ(r,r ′,b)

)
. (A.12)

The normalization condition is fAB→AB(s, 0) = σtotAB .
The equation (A.12) specifies neither the type of con-

stituents responsible for the pomeron interaction nor the
characteristics of the constituent distributions, ϕ2

A(r) and
ϕ2
B(r), measured by the pomeron. This specification will

be done below in terms of the quark model.

A2 Colliding meson as loosely bound qq̄ system

Here the interpretation of the distribution functions ϕ2
A(r)

and ϕ2
B(r) is given in terms of the quark model. For this

purpose, consider the scattering process in the laboratory
frame, initial meson A being at rest. The form factor of
the mesonA is determined by the standard non-relativistic
quark model expression:

FA(q⊥) =
∫

d3k

(2π)3
ψA(k)ψA(|k +

1
2
q⊥|)

=
∫
d3rqq̄φ

2
A(rqq̄)e

i
2rqq̄q⊥ , (A.13)

where k is relative quark–antiquark momentum, k =
1
2 (kq −kq̄), and rqq̄ is interquark distance, rqq̄ = rq − rq̄.
The integration over drqq̄z introduces the quark density in
the rqq̄⊥-space:

ϕ2
A(r⊥) =

∫
drqq̄ zφ

2
A(rqq̄). (A.14)

One more specification is suitable here, namely, an explicit
integration over quark and antiquark coordinates rq ⊥ and
rq̄ ⊥:

FA(q⊥) =
∫
d2rq⊥d

2rq̄⊥δ(rq⊥ + rq̄⊥)

× Φ2
A(rq⊥, rq̄⊥)eirq⊥q⊥ , (A.15)

where Φ2
A(rq⊥, rq̄⊥) = ϕ2

A( 1
2 |rq⊥ − rq̄⊥|). Then, for the

case of a pomeron coupled to one quark of the meson A
(Fig. 2a–b), the amplitude reads:

f
(P )
Aq (sA, q2

⊥) =
∫
d2bAe

iq⊥bA

∫
d2rq⊥d

2rq̄⊥δ(rq⊥ + rq̄⊥)

× Φ2
A(rq⊥, rq̄⊥)ρAq(bA − rq⊥, sAq), (A.16)

ρAq(bA, sAq) =
∫

d2q⊥
(2π)2

e−iq⊥bA gAq s
∆
Aq e

−(G+α′ ln sAq)q
2
⊥ ,

In (A.16) we take into consideration that the quarks of
the mesons A and B share the invariant energy squared:

sA = sAq + sAq̄ , sB = sBq + sBq̄ . (A.17)

For mesons with equal quark masses mq = mq̄,

sAq ' sAq̄ '
1
2
sA , and sBq ' sBq̄ '

1
2
sB . (A.18)

The interaction of meson B with the primary pomeron is
treated in the same way, implying the quark density in
the impact parameter space be invariant under the boost
along the z-axis:

f
(P )
Bq (sB , q2

⊥) =
∫
d2bBe

−iq⊥bB

×
∫
d2rq⊥d

2rq̄⊥δ(rq⊥ + rq̄⊥)

× Φ2
B(rq⊥, rq̄⊥)ρBq(bB − rq⊥, sBq),

(A.19)

ρBq(bB , sBq) =
∫

d2q⊥
(2π)2

eiq⊥bB gBq s
∆
Bq e

−(G+α′ ln sBq)q
2
⊥ ,

To take account of the pomeron exchanges between dif-
ferent quarks (Fig. 2c), one should make a substitution in
(A.16) and (A.19) as follows:

ρAq(bA − rq⊥, sAq)→ ρAq(bA − rq⊥, sAq)
+ρAq̄(bA − rq̄⊥, sAq̄)

≡ ρ
(without cs)
A (bA, r, sA), (A.20)

ρBq(bB − r ′q⊥, sBq)→ ρBq(bB − r ′q⊥, sBq)
+ρBq̄(bB − r ′q̄⊥, sBq̄)

≡ ρ
(without cs)
B (bB , r ′, sB). (A.21)

Using (A.20), one can apply the formulae (A.10)–(A.12) to
the calculation of the scattering amplitude for qq̄ mesons
A and B, with compact notations for quark variables:

d2rq⊥d
2rq̄⊥δ(rq⊥ + rq̄⊥)Φ2

A(rq⊥, rq̄⊥) ≡ d2r ϕ2
A(r),

d2r ′q⊥d
2r ′q̄⊥δ(r

′
q⊥+r ′q̄⊥)Φ2

B(r ′q⊥, r
′
q̄⊥) ≡ d2r ′ϕ2

B(r ′).
(A.21)

This procedure provides us with a unitarized scattering
amplitude, but so far the colour screening has not been
taken into consideration.

A3 Colour screening effects for the scattering of
loosely bound systems

In the Lipatov’s pomeron picture, the colour screening
is due to the two types of coupling of reggeized gluons
to meson quarks, either with the same quark (antiquark)
(Fig. 12a,b) or with both of them (Fig. 12c).

Let the meson A be at rest and sA rather large, sA ∼ s,
see Fig. 12c; then compare these two types of meson–
pomeron vertices. The amplitude related to the sum of
the Fig. 12a-b diagrams is considered in more details in
Appendix B; here we would like to illustrate the scheme
of how the colour screening emerges for a loosely bound
meson. The amplitude corresponding to diagrams of
Fig. 12a-c is equal to
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Fig. 12a–d. The PGG amplitude for coupling to (a) a single
quark, (b) quark and antiquark; (c) the used notations for the
PGG diagram; (d) cutting along the pomeron line represents
the discontinuity of the amplitude, discM2 APGG

f
(P+P+PGG)
A (q2

⊥) = 2
∫

d3κ

(2π)3

∫
d3k

(2π)3

×
[
ψA(k)ψA(|k +

1
2
q⊥|)− ψA(k)ψA(|k + κ⊥|)

]
× aPGG

(
(κ⊥ +

1
2
q⊥)2, (−κ⊥ +

1
2
q⊥)2, κz

)
. (A.22)

The term proportional to ψA(k)ψA(|k + 1
2q⊥|) is the im-

pulse approximation contribution, while the second one
in the integrand (A.22) is due to the triple-reggeon dia-
gram aPGG, which itself is shown in Fig. 12c. It depends
on sA and κz = m0M

2/sA, where M2 is invariant en-
ergy squared carried by the pomeron (see Appendix B for
details):

aPGG

(
(κ⊥ +

1
2
q⊥)2, (−κ⊥ +

1
2
q⊥)2, κz

)
' R s∆A κα(0)−2αG(0)

z . (A.23)

Here αP(0) and αG(0) are the pomeron and reggeized
gluon intercepts: α(0) = 1 +∆ and αG(0) ' 1. The coeffi-
cient R in the r.h.s. (A.23) is a function of q2

⊥, (κ⊥+ 1
2q⊥)2

and (−κ⊥+ 1
2q⊥)2. Taking this coefficient in the exponen-

tial form, as is usual for the reggeon exchange amplitudes,
one obtains:

R ∼ e−βq
2
⊥e−γ(κ⊥+ 1

2q⊥)2
e−γ(−κ⊥+ 1

2q⊥)2

= e−(β+ 1
2γ)q2

⊥ e−2γκ2
⊥ . (A.24)

After having integrated over k = 1
2 (kq − kq̄), one has:

f
(P+P+PGG)
A (q2

⊥) = 2FA(q2
⊥)
∫

d3κ

(2π)3

× aPGG

(
(κ⊥ +

1
2
q⊥)2, (−κ⊥ +

1
2
q⊥)2, κz

)
− 2

∫
d3κ

(2π)3
FA(κ2)

× aPGG

(
(κ⊥ +

1
2
q⊥)2, (−κ⊥ +

1
2
q⊥)2, κz

)
.

(A.25)

This expression can be compared with (A.4) written for
the impulse approximation amplitude; the comparison
provides

gAs
∆
Ae
−(G+α′ ln sA)q2

⊥ = 2
∫

d3κ

(2π)3

× aPGG

(
(κ⊥ +

1
2
q⊥)2, (−κ⊥ +

1
2
q⊥)2, κz

)
. (A.26)

Equation (A.26) allows us to see the colour screening in
its explicit form: for a point-like meson A one has FA = 1,
and the amplitude (A.25) equals to zero. Still, more suit-
able for this purpose is the coordinate representation. The
three-reggeon amplitude aPGG depends on rg1 and rg2

which are the gluon coordinates in the impact parameter
space:

aPGG

(
κ2

1⊥, κ
2
2⊥, κz

)
=
∫
d2rg1d

2rg2

× a
(coordinate)
PGG (rg1, rg2, κz) ei(rg1κ1⊥+rg2κ1⊥). (A.27)

Then (A.25) reads:

f
(P+P+PGG)
A (q2

⊥) = 2
∫
dκz
2π

∫
d3rqq̄

×
∫
d2rg1d

2rg2 φ
2
A(rqq̄) a

(coordinate)
PGG (rg1, rg2, κz)

×
[
e
i
2 (rqq̄⊥+rg1+rg2)q⊥δ(rg1 − rg2)

− eirqq̄zκze
i
2 (rg1+rg2)q⊥δ(rg1 − rg2 − rqq̄⊥)

]
. (A.28)

The integrand in (A.28) tends to zero with |rqq̄⊥| → 0 and
rqq̄z → 0: this is a manifestation of the colour screening.
Moreover, the colour screening reveals itself when, after
the integration over rqq̄z, the expression |rqq̄⊥| tends to
zero. The matter is that the dominant contribution to the
integral (A.28) is given by the region κz ∼ 0. Hence

|rqq̄zκz| ¿ 1 . (A.29)

So, with a sufficiently good accuracy, one can substitute
in (A.28)
exp(irqq̄zκz) → 1 (for more details see Appendix B). As
a result, using the variables bA = 1

2 (rg1 + rg2) and rgg =
rg1 − rg2, we have



L.G. Dakhno, V.A. Nikonov: The structure of soft pomeron and colour screening 223

f
(P+P+PGG)
A (q2

⊥) = 2
∫
dκz
2π

∫
d2rqq̄⊥

∫
d2bAϕ

2
A(rqq̄⊥)

× a(coordinate)
PGG (b2A, b

2
A, κz)e

i(bA+ 1
2rqq̄⊥)q⊥

− 2
∫
dκz
2π

∫
d2rqq̄⊥

∫
d2bAϕ

2
A(rqq̄⊥)

× a(coordinate)
PGG ((bA−

1
2
rqq̄⊥)2, (bA+

1
2
rqq̄⊥)2, κz)eibAq⊥ .

(A.30)

Finally, with the re-definition in the first term bA +
1
2rqq̄⊥ → bA, we have:

f
(P+P+PGG)
A (q2

⊥) = 2
∫
d2beibAq⊥

∫
d2rqq̄⊥ϕ

2
A(rqq̄⊥)

×
∫
dκz
2π

× a
(coordinate)
PGG

(
(bA −

1
2
rqq̄⊥)2, (bA −

1
2
rqq̄⊥)2, κz

)
− 2

∫
d2bAe

ibAq⊥ .

∫
d2rqq̄⊥ϕ

2
A(rqq̄⊥) ·

∫
dκz
2π

× a
(coordinate)
PGG ((bA −

1
2
rqq̄⊥)2, (bA +

1
2
rqq̄⊥)2, κz) .

(A.31)

In our notations

ρA(bA, sA) =
∫
dκz
2π

a
(coordinate)
PGG (b2A, b

2
A, κz), (A.32)

then with the exponential parametrization (A.23) one
has:∫

dκz
2π

a
(coordinate)
PGG

(
(bA −

1
2
rqq̄⊥)2, (bA +

1
2
rqq̄⊥)2, κz

)
= ρA(b, sA) exp

(
−
r2
qq̄⊥
r2
cs

)
. (A.33)

Using the variables given in (A.15)–(A.16), we have

f
(P+P+PGG)
A (q2

⊥) = 2
∫
d2beibAq⊥

×
∫
d2rq⊥d

2rq̄⊥δ(rq⊥ + rq̄⊥)

× Φ2
A(rq⊥, rq̄⊥)ρA(bA, r, sA), (A.34)

with the colour sceening term included into the primary
pomeron amplitude:

ρA(bA, r, sA) = ρA(bA − rq⊥, sA) + ρA(bA − rq̄⊥, sA)

− 2ρA(b− rq⊥ + rq̄⊥
2

, sA)e
− (rq⊥−rq̄⊥)2

4r2cs .

(A.35)

This amplitude should be compared with (A.20), written
without colour screening term.

Likewise, the amplitude f (P+P+PGG)
B (q2

⊥) is written,
with the replacements A→ B and q⊥ → −q⊥.

The full amplitude with the s-channel unitarization is
given by (A.12) with the profile function determined as
follows:

χ(r, r ′, b) =
∫
d2bA d

2bB δ(b− bA + bB)

× ρA(bA, r, sA) ρB(bB , r ′, sB). (A.36)

Appendix B.
Meson–pomeron coupling

Here we calculate the coupling of the three-reggeon am-
plitude PGG to meson. The meson is treated as a loosely
bound qq̄ system.

B1 Three-reggeon amplitude aPGG

This amplitude depends on three invariant energies
squared which are rather large, s, s′ and M2, and three
momentum transfers, t1, t2 and q2, which are small (see
Fig. 12c). With standard normalization, the amplitude
PGG has the form [45,47]:

APGG = R(t1, t2, q2)ei
π
2 αP(q2)(M2)αP(q2)

( s

M2

)αG(t1)

×
(
s′

M2

)αG(t2)

. (B.1)

At αP(0) ' 1, the imaginary part of the pomeron ampli-
tude provides a domiminant contribution. Then, using an
exponential parametrisation for the momentum transfer
dependence, one has:

APGG ' i R e−β(κ2
1⊥+κ2

2⊥)−γq2
⊥

× (ss′)
αP(0)

2 (yy′)
αP(0)

2 −αG(0). (B.2)

Here ti ' −κ2
i⊥ and q2 ' −q2

⊥. The following notations are
used: y = M2/s and y′ = M2/s′. For the three-reggeon
amplitude, y and y′ are small, because s′ ∼ s << M2. The
coefficients β and γ include the weak (logarithmic) depen-
dence on s, s′ and M2 that originates from the standard
expansion of reggeon trajectories: αP(q2) ' αP(0)−α′Pq2

⊥
and αG(t) ' αG(0)− α′Gκ2

⊥.
Imposing s′ = s, the amplitude used in calculations is

as follows:

aPGG =
1
is
APGG

' Re−β(κ2
1⊥+κ2

2⊥)−γq2
⊥s∆yαP(0)−2αG(0). (B.3)

Being a real function, the amplitude aPGG is related to
cutting of Fig. 12d–diagram along the pomeron line. This
means that saPGG given by (B.3) is a discontinuity of
APGG across the M2-cut:

aPGG '
1
s
discM2APGG. (B.4)

Therefore, APGG can be represented as a dispersion inte-
gral over M2, saPGG being an integrand.
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B2 Two-gluon interaction with a quark

The interaction diagram is shown in Fig. 12a: reggeized
gluons interact with the same quark. The meson A is
treated in the rest frame, therefore, a non-relativistic
quark propagator technique is appropriate here: (m2 −
k2)−1 ' (−2mE + k2 − i0)−1, where E = k0 − m. The
amplitude of the Fig. 12a–diagram is:

A(P )(s, q2
⊥) =

∫
dEq̄d

3kq̄
i(2π)4

×
∫

d4κ1

i(2π)4

GA
−2mEq + k2

q − i0

× 1
−2mEq̄ + k2

q̄ − i0

× 1
−2mE′′q + k′′2q − i0

· GA
−2mE′q + k′2q − i0

×
∫
dM2

π
· g2ã(κ2

1, κ
2
2,M

2)
M2 − (PB − κ1)2 − i0 . (B.5)

The notations of momenta are shown in Fig. 12a. The ver-
tex function GA depends on the relative quark–antiquark
momentum, namely, (kq − kq̄)2 ' −(kq − kq̄)2 for the in-
coming meson vertex and (k′q−kq̄)2 ' −(k′q−kq̄)2 for out-
going one. The three-reggeon amplitude PGG is written
as a dispersion integral over M2, g being the quark-gluon
coupling. Three integrations in (B.1) are easy to perform.
When integrating over Eq̄ and κ0, the substitutions are
made:

(−2mEq̄ + k2
q̄ − i0)−1 → iπ

m
δ

(
Eq̄ −

k2
q̄

2m

)
,

(−2mE′′q + k′′2q − i0)−1

→ iπ

m
δ

(
κ10 − ε−

(k2
q + κ1)2

2m
−
k2
q̄

2m2

)
. (B.6)

where ε = 2m− µA. The real part of the three-regeon di-
agram APGG is small, see (B.4). Therefore, in the disper-
sion integral over M2 the main contribution comes from
the half-residue:

(M2 − (PB − κ1)2 − i0)−1 → iπδ(M2 + 2pBκ1z), (B.7)

pB being a large momentum carried by a particle B
along the z-axis: PB = (PB0,P⊥, PBz) = (pB +
µ2
B/(2pB), 0,−pB) and s ' 2pBµA. The terms of the order

of m/pB are neglected.
After integrating over Eq̄, κ10 and M2, we obtain:

A(P )(s, q2
⊥) =

∫
d3kqq̄
(2π)3

ψA(kqq̄)ψA(|kqq̄ +
1
2
q⊥|)

×
∫

d3κ1

(2π)3

i

2m
g2 ã(κ2

1⊥, κ
2
2⊥,−2pBκ1z),

(B.8)

where
ψA(kqq̄) =

GA

2
√

2m(mε+ k2
qq̄)

. (B.9)

For the three-reggeon diagram of Fig. 12a the following
constraint is imposed: s >> M2 = −2pBκ1z >> m2. This
means that κ1z is negative and small, |κ1z| ¿ µA.

Comparing (B.8) with the first term of the right-hand
side of (A.22) gives us the following equality:

g2 ã(κ2
1⊥, κ

2
2⊥, 2pBκz) = 2msaPGG(κ2

1⊥, κ
2
2⊥, κz)FB(q2

⊥),
(B.10)

where κ1z = −κz. Here we take into account that the
form factor of meson B, FB(q2

⊥), enters the lower block of
Fig. 12a.

The expression for the antiquark–pomeron interaction
is identical to that of the quark, for the integrand (B.8)
is invariant with respect to the replacement kq → kq̄ and
g → −g.

B3 The interaction of gluons with quark and antiquark

The graphical representation of the amplitude is shown in
Fig. 12b. The amplitude reads:

A(PGG)(s, q2
⊥) =

∫
dEq̄d

3kq̄
i(2π)4

×
∫

d4κ1

i(2π)4

GA
−2mEq̄ + k2

q̄ − i0

× 1
−2mEq + k2

q − i0
1

−2mE′q̄ + k′2q̄ − i0

× GA
−2mE′q + k′2q − i0

×
∫
dM2

π
·

(−g2) ã(κ2
1⊥, κ

2
q̄,M

2)
M2 − (PB − κ1)2 − i0 . (B.11)

The factor −g2 in the r.h.s. of (B.11) is due to the interac-
tion of gluons with quark and antiquark. The integrations
over Eq̄ and E′q are equivalent to the replacements:

(−2mEq̄ + k2
q̄)
−1 → iπ

m
δ

(
Eq̄ −

k2
q̄

2m

)
,

(−2mE′q + k′2q )−1 → iπ

m
δ

(
ε+

k2
q̄

2m2
+

(k2
q+κ1)2

2m
−κ10

)
,

(B.12)

and the integration over M2 is eliminated due to the re-
placement (B.7). We have

A(PGG)(s, q2
⊥) = −

∫
d3kq̄
(2π)3

∫
d3κ

(2π)3

GA

2
√

2m(mε+ k2
qq̄)

× GA

2
√

2m(mε+ (kqq̄ + κ)2)

× i

m
g2 ã(κ2

1⊥, κ
2
2⊥, 2pBκz) . (B.13)

Implying (B.9) and (B.10), one has the second term in
(A.22).
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Here, as for the diagram of Fig. 12a, the three-regeon
amplitude determines the integration region over κz: the
constraint sÀM2 means that κz is small in the hadronic
scale. This justifies the approximation given by (A.29).

Appendix C.
Pomeron–meson interaction in terms of the
light–cone variables

Here, in terms of the light–cone variables, we calculate the
diagrams shown in Fig. 12a,b.

C1 The pomeron interacting with a quark, Fig. 12a

This diagram written as a spectral integral over qq̄ invari-
ant mass reads:

A(P )(s, q2
⊥) =

∫ ∞
4m2

dM2
qq̄dM

′′2
qq̄ dM

′2
qq̄

π3
· dM

2

π

d4κ1

i(2π)4

×
GA(M2

qq̄)dΦ2(P ; kq, kq̄)
M2
qq̄ − µ2

A

×
dΦ1(P ′′; k′′q , kq̄)

M ′′2qq̄ − (PA + κ1)2 − i0

×
dΦ1(P ′; k′q, kq̄)GA(M ′2qq̄)

M ′2qq̄ − µ2
A

×S(q)
I

g2â(κ2
1⊥, κ

2
2⊥,M

2)
M2 − (PB − κ2

1)2 − i0 . (C.1)

The detailed presentation of the spectral integration tech-
nique and its application to the description of composite
systems can be found in [48]. GA is the vertex function for
the transition meson A→ qq̄; dΦ2 and dΦ1 are the phase
spaces of the qq̄ intermediate states:

dΦ2(P ; kq, kq̄) =
1
2

d3kq
(2π)32kq0

d3kq̄
(2π)32kq̄

(2π)4δ4(P−kq−kq̄),

dΦ1(P ′; k′q, kq̄) =
1
2

d3k′q
(2π)32k′q0

δ4(P ′ − k′q − kq̄) . (C.2)

Here P and P ′ stand for the total four-momenta of the
intermediate states with invariant masses Mqq̄ and M ′qq̄:
P 2 = M2

qq̄ and P ′2 = M ′2qq̄. To introduce the light–cone
variables, the centre-of-mass system of the colliding par-
ticles A and B is the most suitable. Using the momentum
notation p = (p0,p⊥, pz), one has for PA and PB :

PA = (p+
µ2
A

2p
, 0, p), PB = (p+

µ2
B

2p
, 0,−p). (C.3)

The factor S(q)
I is defined by the spin variables of quarks:

S
(q)
I = −Sp

[
ΓA (k̂′1 +m) n̂ (k̂′′1 +m)

× n̂ (k̂1 +m)ΓA (−k̂2 +m)
]
, (C.4)

where ΓA is the spin-dependent factor for the vertex A→
qq̄, for example, ΓA = γ5 for meson, and n̂ quark–gluon
vertex:

n̂ = γαnα, n =
1
2p

(1, 0,−1). (C.5)

The gluon polarization nα which is parallel to PB provides
the main contribution into fermion loop related to meson
A [49].

The phase space factors in terms of light–cone vari-
ables read:

dΦ2(P ; kq, kq̄) =
1

(4π)2

dxqdxq̄
xqxq̄

δ(1− xq − xq̄)d2kq⊥d
2kq̄⊥

× δ(kq⊥ + kq̄⊥)δ

(
M2
qq̄ −

m2
q⊥
xq
−
m2
q̄⊥
xq̄

)
,

dΦ1(P ′; k′q, kq̄) = π
dx′q
x′q

δ(1− x′q − xq̄)d2k′q⊥

× δ(k′q⊥ + kq̄⊥ − q⊥)

× δ

(
M ′2qq̄ + q 2

⊥ −
m′2q⊥
x′q
−
m2
q̄⊥
xq̄

)
,

dΦ1(P ′′; k′′q , kq̄) = π
dx′′q
x′′q

δ(1− x′′q − xq̄)d2k′′q⊥

× δ(k′′q⊥ + kq̄⊥ − κ1⊥)

× δ

(
M ′′2qq̄ + κ 2

1⊥ −
m′′2q⊥
x′′q
−
m2
q̄⊥
xq̄

)
.(C.6)

Here xq = kqz/p and m2
q⊥ = m2 + k2

q⊥. An important
point is that κz/p is small at large p: it follows from
the constraint M2 ¿ s for three-reggeon diagrams. The
integration over M2

qq̄, M
′2
qq̄, M

′′2
qq̄ and the substitution(

M2 − (PN − κ1)2 − i0
)−1 → iπδ

(
M2 − (PB − κ1)2

)
(see (C.7)) give:

A(P )(s, q2
⊥) =

1
4π

∫ 1

0

dx

x(1− x)3

×
∫

d2k⊥
(2π)2

·
GA(M2

qq̄)
M2
qq̄ − µ2

A

GA(M ′2qq̄)
M ′2qq̄ − µ2

A

×
∫
dκ10dκ1zd

2κ1⊥
(2π)4

× S
(q)
I

g2âPGG

(
κ2

1⊥, κ
2
2⊥,−2p(κ10 + κ1z)

)
M ′′2qq̄ − 2p(κ10 − κ1z)− i0

,

(C.7)

where xq̄ ≡ x, kq̄⊥ ≡ k⊥ and

M2
qq̄ =

m2 + k2
⊥

x(1− x)
,

M ′2qq̄ =
m2 + (k⊥ − xq⊥)2

x(1− x)
,

M ′′2qq̄ =
m2 + (k⊥ − xκ1⊥)2

x(1− x)
. (C.8)
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The integration over κ− = κ10 − κ1z is equivalent to the
substitution (M ′′2qq̄ − 2pκ−− i0)−1 → iπ

p δ(κ−), so we have

A(P )(s, q2
⊥) =

1
4π

∫ 1

0

dx

x(1− x)3

×
∫

d2k⊥
(2π)2

·
GA(M2

qq̄)
M2
qq̄ − µ2

A

GA(M ′2qq̄)
M ′2qq̄ − µ2

A

Sqq̄I

×
∫
dκ+d

2κ⊥
(2π)3

· ig
2

4p
âPGG

(
κ2

1⊥, κ
2
2⊥, 2pκ+)

)
.

(C.9)

The factor GA(M2
qq̄)/(M

2
qq̄ − µ2

A) determines the wave
function of meson A. The pion vertex Gπ(M2

qq̄) has been
found in [48] from the experimental data on pion form
factor.

The factor SqI is given by (C.4). One can re-write it,
using the equality n̂n̂ = 0, as follows:

S
(q)
I = −2xqSp

[
ΓA(k̂′q +m)n̂(k̂q +m)ΓA(−k̂q̄ +m)

]
,

(C.10)
n̂ being a spin-dependent quark–pomeron vertex.

C2 The pomeron interacting with antiquark

When two reggeized gluons interact with antiquark, the
spin-dependent part of the loop diagram reads:

S
(q̄)
I = −Sp

[
ΓA (k̂q +m)ΓA (−k̂q̄ +m)

× n̂ (−k̂′′q̄ +m) n̂ (−k̂′q̄ +m)
]

= −2xq̄Sp
[
ΓA(k̂q +m)ΓA(−k̂q̄ +m)(−n̂)(−k̂′q̄ +m)

]
.

(C.11)

The antiquark–pomeron vertex is equal to −n̂.
The momentum-dependent part of the loop diagram is

determined by (C.9), with the re-definitions x → (1 − x)
and k⊥ → −k⊥.

C3 The pomeron interacting with quark and
antiquark, Fig. 12b

The diagram of Fig. 12b written as a spectral integral over
the qq̄ invariant mass reads:

A(P )(s, q2
⊥) =

∫ ∞
4m2

dM2
qq̄dM

′′2
qq̄ dM

′2
qq̄

π3
· dM

2

π

d4κ1

i(2π)4

×
GA(M2

qq̄)dΦ2(P ; kq, kq̄)
M2
qq̄ − µ2

A

×
dΦ1(P ′′; k′q, kq̄)

M ′′2qq̄ − (PA + κ1)2 − i0

×
dΦ1(P ′; k′q, k

′
q̄)GA(M ′2qq̄)

M ′2qq̄ − µ2
A

×SII
g2â(κ2

1⊥, κ
2
2⊥,M

2)
M2 − (PB − κ2

1)2 − i0 (C.12)

The factor SII is defined by the quark spin variables:

S
(q)
II = −Sp

[
ΓA (k̂′1 +m) n̂ (k̂1 +m)

×ΓA (−k̂2 +m) n̂ (−k̂′2 +m)
]
. (C.13)

The phase space factors in terms of the light–cone vari-
ables read:

dΦ2(P ; kq, kq̄) =
1

(4π)2

dxqdxq̄
xqxq̄

δ(1− xq − xq̄)d2kq⊥d
2kq̄⊥

× δ(kq⊥ + kq̄⊥)

× δ
(
M2
qq̄ −

m2
q⊥
xq
−
m2
q̄⊥
xq̄

)
,

dΦ1(P ′; k′q, k
′
q̄) = π

dx′q̄
x′q̄

δ(1− x′q − x′q̄)d2k′q̄⊥

× δ(k′q⊥ + k′q̄⊥ − q⊥)

× δ
(
M ′2qq̄ + q 2

⊥ −
m′2q⊥
x′q
−
m′2q̄⊥
x′q̄

)
,

dΦ1(P ′′; k′q, kq̄) = π
dx′q
x′q

δ(1− x′q − xq̄)d2k′q⊥

× δ(k′q⊥ + kq̄⊥ − κ1⊥)

× δ
(
M ′′2qq̄ + κ 2

1⊥ −
m′2q⊥
x′q
−
m2
q̄⊥
xq̄

)
.

(C.14)

Integrating over M2
qq̄, M

′2
qq̄, M

′′2
qq̄ and M2, one gets:

A(P )(s, q2
⊥) =

1
4π

∫ 1

0

dx

x2(1− x)2

×
∫

d2k⊥
(2π)2

·
GA(M2

qq̄)
M2
qq̄ − µ2

A

GA(M ′2qq̄)
M ′2qq̄ − µ2

A

×
∫
dκ10dκ1zd

2κ⊥
(2π)4

× SII
(−g2)âPGG

(
κ2

1⊥, κ
2
2⊥,−2p(κ10 + κ1z)

)
M ′′2qq̄ − 2p(κ10 − κ1z)− i0

.

(C.15)

The invariant masses squared in the intermediate states
are:

M2
qq̄ =

m2 + k2
⊥

x(1− x)
,

M ′2qq̄ =
m2 + (k⊥ − xq⊥)2

x(1− x)
,

M ′′2qq̄ =
m2 + (k⊥ − xκ1⊥ − (1− x)κ2⊥)2

x(1− x)
. (C.16)

The integration over κ− = κ10 − κ1z is equivalent to
the substitution (M ′′2qq̄ − 2pκ− − i0)−1 → iπ

p δ(κ−), so we
have
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A(P )(s, q2
⊥) = − 1

4π

∫ 1

0

dx

x(1− x)3

×
∫

d2k⊥
(2π)2

·
GA(M2

qq̄)
M2
qq̄ − µ2

A

GA(M ′2qq̄)
M ′2qq̄ − µ2

A

×
∫
dκ+d

2κ⊥
(2π)3

× SII
ig2

4p
âPGG

(
κ2

1⊥, κ
2
2⊥, 2pκ+)

)
.

(C.17)

Here, in line with (C.10), the sign of κ+ is changed: κ+ =
−κ10 − κ1z.
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